Variations on an algebraic inequality

Arkady Alt, San Jose, California, USA

Abstract

We present some techniques used to prove a variety of algebraic and geometric inequalities.

1 Main Theorem

Let

$$
\Delta(x, y, z)=2 x y+2 y z+2 z x-x^{2}-y^{2}-z^{2} .
$$

Lemma 1. Let α, β, γ be positive real numbers such that $\Delta(\alpha, \beta, \gamma)>0$. Then

$$
\begin{equation*}
\alpha v w+\beta u w+\gamma u v \leq 0 \tag{A}
\end{equation*}
$$

for all real numbers u, v, w with $u+v+w=0$.
In addition, $\alpha v w+\beta u w+\gamma u v=0$ if and only if $u=v=w=0$.
Proof. Indeed,

$$
\begin{aligned}
\alpha v w-\beta w u & -\gamma u v=-\gamma u v+(u+v)(\alpha v+\beta u)=-\left[(\alpha+\beta-\gamma) u v+\alpha v^{2}+\beta u^{2}\right] \\
& =\alpha\left[v+\frac{(\alpha+\beta-\gamma) u}{2 \alpha}\right]^{2}+\frac{u^{2}\left(2 \alpha \beta+2 \beta \gamma+2 \gamma \alpha-\alpha^{2}-\beta^{2}-\gamma^{2}\right)}{4 \alpha} \\
& \geq 0 .
\end{aligned}
$$

It easily follows that equality occurs if and only if $u=v=w=0$.
Corollary. Let α, β, γ be positive real numbers such that $\alpha+\beta+\gamma=1$ and $\Delta(\alpha, \beta, \gamma)>0$. If x, y, z are real numbers with $x+y+z=1$, then

$$
\begin{equation*}
2 \sum_{c y c} x \beta \gamma-\sum_{c y c} \alpha y z \geq 3 \alpha \beta \gamma . \tag{B}
\end{equation*}
$$

Proof. Let $u=x-\alpha, v=y-\beta, w=z-\gamma$. Then $x=u+\alpha, y=v+\beta, z=w+\gamma$, $u+v+w=0$, and

$$
\begin{aligned}
2 \sum_{\text {cyc }} x \beta \gamma-\sum_{\text {cyclic }} \alpha y z & =2 \sum_{\text {cyclic }}(u+\alpha) \beta \gamma-\sum_{\text {cyclic }} \alpha(v+\beta)(w+\gamma) \\
& =6 \alpha \beta \gamma+2 \sum_{\text {cyc }} u \beta \gamma-3 \alpha \beta \gamma-\sum_{\text {cyclic }} \alpha v w-\sum_{\text {cyclic }}(\alpha \gamma v+\alpha \beta w) \\
& =3 \alpha \beta \gamma-\sum_{\text {cyclic }} \alpha v w .
\end{aligned}
$$

From (A) we have $\sum_{\text {cyclic }} \alpha v w \leq 0$, hence (B) follows. Equality occurs only when $x=\alpha, y=\beta, z=\gamma$.

Theorem 1.

i. Let α, β, γ be positive real numbers such that $\Delta(\alpha, \beta, \gamma)>0$ and let x, y, z be any real numbers. Then

$$
\begin{equation*}
\alpha y z+\beta z x+\gamma x y \leq \frac{\alpha \beta \gamma(x+y+z)^{2}}{\Delta(\alpha, \beta, \gamma)} \tag{C}
\end{equation*}
$$

with equality if and only if

$$
x: y: z=(\beta+\gamma-\alpha) a: \beta(\gamma+\alpha-\beta): \gamma(\alpha+\beta-\gamma) .
$$

ii. Inequality (C) is a particular case of inequality (A).

Proof. i. If $x+y+z=0$, then (C) holds because $\alpha y z+\beta z x+\gamma x y \leq 0$, by (A). If $x+y+z \neq 0$, we can assume that $x+y+z=1$. Let $\Delta=\Delta(\alpha, \beta, \gamma)$ and let

$$
u=x-\frac{\alpha(\beta+\gamma-\alpha)}{\Delta}, v=y-\frac{\beta(\gamma+\alpha-\beta)}{\Delta}, w=z-\frac{\gamma(\alpha+\beta-\gamma)}{\Delta} .
$$

Because $\sum_{c y c} \frac{\alpha(\beta+\gamma-\alpha)}{\Delta}=1$ and $x+y+z=1$, we have $u+v+w=0$ and

$$
\begin{aligned}
\sum_{c y c} c x y & =\sum_{c y c} c\left(u+\frac{\alpha(\beta+\gamma-\alpha)}{\Delta}\right)\left(v+\frac{\beta(\gamma+\alpha-\beta)}{\Delta}\right) \\
& =\sum_{c y c} c u v+\sum_{c y c} \frac{\alpha \beta \gamma(\beta+\gamma-\alpha)(\gamma+\alpha-\beta)}{\Delta^{2}} \\
& +\sum_{c y c}\left(\frac{\gamma \alpha(\beta+\gamma-\alpha) v}{\Delta}+\frac{\beta \gamma(\gamma+\alpha-\beta) u}{\Delta}\right) \\
& =\sum_{c y c} \gamma u v+\frac{\alpha \beta \gamma}{\Delta^{2}} \sum_{c y c}\left(\gamma^{2}-(\alpha-\beta)^{2}\right)+\sum_{c y c} \frac{u \beta \gamma(\gamma+\alpha-\beta+\alpha+\beta-\gamma)}{\Delta} \\
& =\sum_{c y c} \gamma u v+\frac{\alpha \beta \gamma}{\Delta}+2 \alpha \beta \gamma(u+v+w)=\sum_{c y c} \gamma u v+\frac{\alpha \beta \gamma}{\Delta} \\
& \leq \frac{\alpha \beta \gamma}{\Delta},
\end{aligned}
$$

by Lemma 1 .
Equality occurs when $x=\frac{\alpha(\beta+\gamma-\alpha)}{\Delta}, y=\frac{\beta(\gamma+\alpha-\beta)}{\Delta}, z=\frac{\gamma(\alpha+\beta-\gamma)}{\Delta}$, and is implied by $u=v=w=0$ in (A).

Thus equality occurs if and only if

$$
x: y: z=(\beta+\gamma-\alpha) a: \beta(\gamma+\alpha-\beta): \gamma(\alpha+\beta-\gamma) .
$$

ii. Whenever $x+y+z=0$ inequality (C) becomes (A).

2 Geometric Variations

Notations

1. Let K be the area of triangle $A B C$
2. Let R, r, s be the circumradius, inradius, and semiperimeter, respectively, of triangle $A B C$
3. $B C=a, C A=b, A B=c$
4. For an arbitrary interior point P, of triangle $A B C$, let the distance from P to vertex $X \in\{A, B, C\}$ be $R_{X}(P)$ or shortly R_{X}
5. Let the distance from P to the side $x \in\{a, b, c\}$ be $d_{x}(P)$ or shortly d_{x}
6. Let A_{p}, B_{p}, C_{p} be the feet of the perpendiculars from P onto sides $B C, C A, A B$
7. We will call the triangle $A_{p} B_{p} C_{p}$ the Pedal Triangle associated with P
8. $a_{p}=B_{p} C_{p}, b_{p}=C_{p} A_{p}, c_{p}=A_{p} B_{p}$.

Because R_{a}, R_{b}, R_{c} are diameters of the circumcircles of $P C_{p} A B_{p}, P A_{p} B C_{p}, P B_{p} C A_{p}$ then, by the Law of Sines, $\sin \alpha=\frac{a}{2 R}, \sin \beta=\frac{b}{2 R}, \sin \gamma=\frac{c}{2 R}$ and

$$
\begin{equation*}
a_{p}=R_{a} \sin \alpha=\frac{a R_{a}}{2 R}, b_{p}=R_{b} \sin \beta=\frac{b R_{b}}{2 R}, c_{p}=R_{c} \sin \gamma=\frac{c R_{c}}{2 R} . \tag{F1}
\end{equation*}
$$

Let $K_{a}=K_{C P B}, K_{b}=K_{A P C}, K_{c}=K_{B P A}$ and $\left(p_{a}, p_{b}, p_{c}\right)$ be the baricentric coordinates of P, that is $p_{a}+p_{b}+p_{c}=1$ and $p_{a}, p_{b}, p_{c} \geq 0$.
Then $p_{a}: p_{b}: p_{c}=K_{a}: K_{b}: K_{c}$, i.e. $p_{a}=\frac{K_{a}}{K}, p_{b}=\frac{K_{b}}{K}, p_{c}=\frac{K_{c}}{K}$. From $K_{a}+K_{b}+K_{c}=K$ it follows that

$$
\begin{equation*}
a d_{a}+b d_{b}+c d_{c}=2 F . \tag{I}
\end{equation*}
$$

Furthermore, $K_{x}=\frac{x d_{x}}{2}, K=\frac{x h_{x}}{2}, x \in\{a, b, c\}$ and $4 K R=a b c$, hence

$$
\begin{equation*}
d_{a}=\frac{2 p_{a} K}{a}=\frac{p_{a} b c}{2 R}, d_{b}=\frac{2 p_{b} K}{b}=\frac{p_{b} c a}{2 R}, d_{c}=\frac{2 p_{c} K}{c}=\frac{p_{c} a b}{2 R} . \tag{F2}
\end{equation*}
$$

Note that if a, b, and c are the sidelengths of a triangle, then

$$
\Delta(a, b, c)>0 \quad \text { and } \quad \Delta\left(a^{2}, b^{2}, c^{2}\right)=16 K^{2} .
$$

Applications

Problem 1. Let P be an interior point of triangle $A B C$. Let a_{p}, b_{p}, c_{p} be the sides of the pedal triangle associated with P. Find the minimum value of

$$
a_{p}^{2}+b_{p}^{2}+c_{p}^{2}
$$

Solution. Let $\left(p_{a}, p_{b}, p_{c}\right)$ be the baricentric coordinates of P, that is $p_{a}, p_{b}, p_{c} \geq$ $0, p_{a}+p_{b}+p_{c}=1$. Because $\angle B_{p} P C_{p}=180^{\circ}-A$, by the Law of Cosines, $a_{p}^{2}=$ $d_{b}^{2}+d_{c}^{2}+2 d_{b} d_{c} \cos A$ and $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$. From (F2), $d_{b}=\frac{2 p_{b} K}{b}, d_{c}=\frac{2 p_{c} K}{c}$, and $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ and

$$
\begin{aligned}
a_{p}^{2} & =\frac{4 p_{b}^{2} K^{2}}{b^{2}}+\frac{4 p_{c}^{2} K^{2}}{c^{2}}+\frac{4 p_{b} p_{c} K^{2}}{b c} \cdot \frac{b^{2}+c^{2}-a^{2}}{b c} \\
& =\frac{4 K^{2}}{b^{2} c^{2}}\left(p_{b}^{2} c^{2}+p_{c}^{2} b^{2}+p_{b} p_{c}\left(b^{2}+c^{2}-a^{2}\right)\right) \\
& =\frac{4 K^{2}}{b^{2} c^{2}}\left(p_{b}\left(1-p_{c}-p_{a}\right) c^{2}+p_{c}\left(1-p_{a}-p_{b}\right) b^{2}+p_{b} p_{c}\left(b^{2}+c^{2}-a^{2}\right)\right) \\
& =\frac{4 K^{2}}{b^{2} c^{2}}\left(p_{b} c^{2}+p_{c} b^{2}-p_{b} p_{c} a^{2}-p_{c} p_{a} b^{2}-p_{a} p_{b} c^{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{c y c} a_{p}^{2} & =\frac{4 K^{2}}{a^{2} b^{2} c^{2}} \sum_{c y c}\left(p_{b} c^{2} a^{2}+p_{c} a^{2} b^{2}-p_{b} p_{c} a^{4}-p_{c} p_{a} a^{2} b^{2}-p_{a} p_{b} a^{2} c^{2}\right) \\
& =\frac{4 K^{2}}{a^{2} b^{2} c^{2}}\left(2 \sum_{c y c} p_{a} b^{2} c^{2}-\left(a^{2}+b^{2}+c^{2}\right) \sum_{c y c} a^{2} p_{b} p_{c}\right) .
\end{aligned}
$$

Let $x=p_{a}, y=p_{b}, z=p_{c}, \alpha=\frac{a^{2}}{a^{2}+b^{2}+c^{2}}, \beta=\frac{b^{2}}{a^{2}+b^{2}+c^{2}}, \gamma=\frac{c^{2}}{a^{2}+b^{2}+c^{2}}$. Then $x+y+z=\alpha+\beta+\gamma=1$. In addition, $\Delta(\alpha, \beta, \gamma)=\frac{16 K^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}>0$ and $\min _{P}\left(a_{p}^{2}+b_{p}^{2}+c_{p}^{2}\right)=\frac{4 K^{2}\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a^{2} b^{2} c^{2}} \min _{x, y, z}\left(2 \sum_{c y c} x \beta \gamma-\sum_{c y c} \alpha y z\right)$.
Recalling inequality (B) we get $\min _{x, y, z}\left(2 \sum_{\text {cyc }} x \beta \gamma-\sum_{c y c} \alpha y z\right)=3 \alpha \beta \gamma$. Then

$$
\begin{gather*}
\min _{P}\left(a_{p}^{2}+b_{p}^{2}+c_{p}^{2}\right)=\frac{4 K^{2}\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a^{2} b^{2} c^{2}} \cdot 3 \alpha \beta \gamma=\frac{12 K^{2}}{a^{2}+b^{2}+c^{2}}, \text { or } \\
a_{p}^{2}+b_{p}^{2}+c_{p}^{2} \geq \frac{12 K^{2}}{a^{2}+b^{2}+c^{2}} \tag{PT}
\end{gather*}
$$

which is called the Pedal Triangle inequality. Equality occurs if and only if

$$
p_{a}=\frac{a^{2}}{a^{2}+b^{2}+c^{2}}, p_{b}=\frac{b^{2}}{a^{2}+b^{2}+c^{2}}, p_{c}=\frac{c^{2}}{a^{2}+b^{2}+c^{2}}
$$

or P is the Lemoine point of the given triangle.
Remark 1. Because $a_{p}=\frac{a R_{a}}{2 R}, b_{p}=\frac{b R_{b}}{2 R}, c_{p}=\frac{c R_{c}}{2 R} \quad$ and $a R_{a}+b R_{b}+c R_{c} \geq 4 K$, we obtain

$$
\begin{aligned}
a_{p}^{2}+b_{p}^{2}+c_{p}^{2} & \geq \frac{\left(a_{p}+b_{p}+c_{p}\right)^{2}}{3}=\frac{1}{3}\left(\frac{a R_{a}}{2 R}+\frac{b R_{b}}{2 R}+\frac{c R_{c}}{2 R}\right)^{2} \\
& =\frac{\left(a R_{a}+b R_{b}+c R_{c}\right)^{2}}{12 R^{2}} \geq \frac{4 K^{2}}{3 R^{2}}
\end{aligned}
$$

Since $\frac{12 K^{2}}{a^{2}+b^{2}+c^{2}} \geq \frac{4 K^{2}}{3 R^{2}} \Longleftrightarrow a^{2}+b^{2}+c^{2} \leq 9 R^{2}$, the inequality (PT) is sharper $\operatorname{than} a_{p}^{2}+b_{p}^{2}+c_{p}^{2} \geq \frac{4 K^{2}}{3 R^{2}}$.

Remark 2. If we let $a_{p}=\frac{a R_{a}}{2 R}, b_{p}=\frac{b R_{b}}{2 R}, c_{p}=\frac{c R_{c}}{2 R}$, from (PT) it follows that

$$
\begin{equation*}
\sum_{c y c} a^{2} R_{a}^{2} \geq \frac{3 a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}} \tag{RP}
\end{equation*}
$$

Problem 2. Let a, b, and c be the sidelengths of a triangle $A B C$. Find the maximum value of

$$
d_{a}(P) d_{b}(P)+d_{b}(P) d_{c}(P)+d_{c}(P) d_{a}(P)
$$

where P is an arbitrary interior point of $A B C$.
Solution. Because $a d_{a}+b d_{b}+c d_{c}=2 K$, then by replacing (x, y, z) and (α, β, γ) in inequality (C) with $\left(a d_{a}, b d_{b}, c d_{c}\right)$ and (a, b, c), respectively, we obtain

$$
a b c\left(d_{b} d_{c}+d_{c} d_{a}+d_{a} d_{c}\right) \leq \frac{a b c\left(a d_{a}+b d_{b}+c d_{c}\right)^{2}}{\Delta(a, b, c)}
$$

which is equivalent to

$$
\begin{equation*}
d_{a} d_{b}+d_{b} d_{c}+d_{c} d_{a} \leq \frac{4 K^{2}}{\Delta(a, b, c)} \tag{DP}
\end{equation*}
$$

Equality occurs if and only if $p_{a}: p_{b}: p_{c}=a(s-a): b(s-b): c(s-c)$ or $d_{a}: d_{b}: d_{c}=(s-a):(s-b):(s-c)$. This is equivalent to

$$
d_{a}=\frac{2(s-a)}{\Delta(a, b, c)}, d_{b}=\frac{2(s-b)}{\Delta(a, b, c)}, d_{c}=\frac{2(s-c)}{\Delta(a, b, c)}
$$

Thus

$$
\min \left(d_{a}(P) d_{b}(P)+d_{b}(P) d_{c}(P)+d_{c}(P) d_{a}(P)\right)=\frac{4 K^{2}}{\Delta(a, b, c)}
$$

3 Algebraic Variations of inequalities (A),(B),(C).

Variation 1. Because $\Delta(b+c, c+a, a+b)=4(a b+b c+c a)>0$, by replacing (α, β, γ) in (C) with $(b+c, c+a, a+b)$ we obtain the inequality

$$
\begin{equation*}
a x(y+z)+b y(z+x)+c z(x+y) \leq \frac{(x+y+z)^{2}}{4} \cdot \frac{(a+b)(b+c)(c+a)}{a b+b c+c a} \tag{D}
\end{equation*}
$$

which holds for all positive real numbers a, b, c and all real numbers x, y, z. Equality occurs if and only if $x: y: z=a(b+c): b(c+a): c(a+b)$.

Because $a x(y+z)+b y(z+x)+c z(x+y)=x y(a+b)+y z(b+c)+z x(c+a)$, inequality (D) can be rewritten in the form

$$
\begin{equation*}
\frac{x y}{(b+c)(c+a)}+\frac{y z}{(c+a)(a+b)}+\frac{z x}{(a+b)(b+c)} \leq \frac{(x+y+z)^{2}}{4(a b+b c+c a)} \tag{E}
\end{equation*}
$$

and, by replacing (x, y, z) in (E) with $(x(b+c), y(c+a), z(a+b))$, we obtain

$$
\begin{equation*}
x y+y z+z x \leq \frac{(x(b+c)+y(c+a)+z(a+b))^{2}}{4(a b+b c+c a)} . \tag{F}
\end{equation*}
$$

Variation 2. Inequality (F) written as

$$
\begin{equation*}
(a(y+z)+b(z+x)+c(x+y))^{2} \geq 4(x y+y z+z x)(a b+b c+c a) \tag{F1}
\end{equation*}
$$

is identical to the inequality from [4].
Assume that $x, y, z \geq 0$ in (F1). Then

$$
\begin{equation*}
x(b+c)+y(c+a)+z(a+b) \geq 2 \sqrt{(a b+b c+c a)(x y+y z+z x)} \tag{F2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x(b+c)}{y+z}+\frac{y(c+a)}{z+x}+\frac{z(a+b)}{x+y} \geq \sqrt{3(a b+b c+c a)} \tag{F3}
\end{equation*}
$$

(can be obtained by replacing (x, y, z) in (F2) with $\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)$ and using the inequality $\left.\sum_{c y c} \frac{y z}{(z+x)(x+y)} \geq \frac{3}{4} \Longleftrightarrow 9 x y z \leq(x+y+z)(x y+y z+z x)\right)$ were discussed in [2] and [3] as strong tools for proving several hard inequalities.

Adding $a x+b y+c z$ to both sides of (F2) we obtain

$$
\begin{equation*}
(a+b+c)(x+y+z) \geq a x+b y+c z+2 \sqrt{(a b+b c+c a)(x y+y z+z x)} \tag{F4}
\end{equation*}
$$

Inequality (F4) is the homogeneous form of an inequality from the 2001 Ukrainian Mathematics Olympiad, which also appeared in [1] as problem 6.

We conclude this article with a problem.
Problem 3. For positive real numbers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ prove that

$$
\sum_{c y c}^{6} x_{1} x_{2} x_{3} x_{4} \leq \frac{\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)^{4}}{6^{3}}
$$

Solution. Because

$$
\sum_{c y c}^{6} x_{1} x_{2} x_{3} x_{4}=x_{1} x_{3} \cdot x_{2}\left(x_{4}+x_{6}\right)+x_{3} x_{5} \cdot x_{4}\left(x_{6}+x_{2}\right)+x_{5} x_{1} \cdot x_{6}\left(x_{2}+x_{4}\right),
$$

applying inequality (C) for $a=x_{1} x_{3}, b=x_{3} x_{5}, c=x_{5} x_{1}$ and $x=x_{2}, y=x_{4}, z=x_{6}$ we obtain:

$$
\begin{aligned}
\sum_{c y c}^{6} x_{1} x_{2} x_{3} x_{4} & \leq \frac{\left(x_{2}+x_{4}+x_{6}\right)^{2}}{4} \cdot \frac{\left(x_{1} x_{3}+x_{3} x_{5}\right)\left(x_{3} x_{5}+x_{5} x_{1}\right)\left(x_{5} x_{1}+x_{1} x_{3}\right)}{x_{1} x_{3} x_{5}\left(x_{1}+x_{3}+x_{5}\right)} \\
& =\frac{\left(x_{2}+x_{4}+x_{6}\right)^{2}}{4} \cdot \frac{\left(x_{1}+x_{3}\right)\left(x_{3}+x_{5}\right)\left(x_{5}+x_{1}\right)}{x_{1}+x_{3}+x_{5}}
\end{aligned}
$$

By the AM-GM inequality,

$$
\begin{aligned}
\frac{\left(x_{1}+x_{3}\right)\left(x_{3}+x_{5}\right)\left(x_{5}+x_{1}\right)}{\left(x_{1}+x_{3}+x_{5}\right)^{3}} & \leq\left(\frac{\frac{x_{1}+x_{3}}{x_{1}+x_{3}+x_{5}}+\frac{x_{3}+x_{5}}{x_{1}+x_{3}+x_{5}}+\frac{x_{5}+x_{1}}{x_{1}+x_{3}+x_{5}}}{3}\right)^{3} \\
& =\left(\frac{2}{3}\right)^{3}=\frac{8}{27}
\end{aligned}
$$

hence

$$
\frac{\left(x_{1}+x_{3}\right)\left(x_{3}+x_{5}\right)\left(x_{5}+x_{1}\right)}{x_{1}+x_{3}+x_{5}} \leq \frac{8}{27}\left(x_{1}+x_{3}+x_{5}\right)^{2}
$$

and

$$
\begin{aligned}
\sum_{c y c}^{6} x_{1} x_{2} x_{3} x_{4} & \leq \frac{\left(x_{2}+x_{4}+x_{6}\right)^{2}}{4} \cdot \frac{8}{27}\left(x_{1}+x_{3}+x_{5}\right)^{2} \\
& =\frac{2}{27}\left(x_{2}+x_{4}+x_{6}\right)^{2} \cdot\left(x_{1}+x_{3}+x_{5}\right)^{2} \leq \frac{2}{27} \cdot\left(\frac{x_{1}+x_{2}+\cdots+x_{6}}{2}\right)^{4} \\
& =\frac{\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)^{4}}{6^{3}}
\end{aligned}
$$

References.

[1] Andreescu T, Cirtoaje V., Dospinescu G., Lascu M., Old and New Inequalities, GIL Publishing House, 2004.
[2] Pham Huu Duc, An unexpectedly useful inequality, Mathematical Reflections 2008, Issue 1.
[3] Tran Quang Hung, On some geometric inequalities, Mathematical Reflections 2008, Issue 3.
[4] Vedula N.Murty, problem 3076, Crux Mathematicorum, vol.31,no.8.

